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The dynamical equation, being the combination of Schrödinger and Liouville equa-
tions, produces noncausal evolution when the initial state of interacting quantum and
classical mechanical systems is as it is demanded in discussions regarding the problem
of measurement. It is found that state of quantum mechanical system instantaneously
collapses due to the non-negativity of probabilities.

1. INTRODUCTION

Quantum and classical mechanics are causal theories. By this we mean that
during evolutions, that are governed by dynamical equations of these theories,
states cannot change their purities. (Of course, this holds only in the cases with
no stochastic terms in the Hamiltonian.) However, there are situations in which
purity of state can be changed. This noncontinuous change happens when quantum
system interacts with some classical system. An example of this is a process of
measurement with a well-known reduction, collapse, of state.

Theory that unifies quantum and classical mechanics by describing interac-
tion of classical and quantum systems has to be based on such dynamical equation
which can produce noncausal evolutions. The dynamical equation of hybrid sys-
tems, quantum and classical systems in interaction, which was firstly introduced
by Aleksandrov (1981), produces noncausal evolution in a case addressing the
problem of measurement. More precisely, If the state of quantum system before
the measurement is the superposition of the eigenstates of measured observable,
i.e.,

∑
i |ψi〉, and if the apparatus before the measurement is in the state with

sharp values of position and momentum, then the pure initial noncorrelated state
has to evolve into some mixed correlated state. The equation of motion gov-
erning this process is just the combination of Schrödinger–von Neumann, and
Liouville equations. Interesting is that for this transition only the regular type
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Hamiltonian is needed (that is Hamiltonian with no stochastic terms). On the
other hand, important role is played by the non-negativity of states, which resem-
bles the non-negativity of probabilities, and this is what we shall discuss in this
article.

In order to investigate mentioned non-negativity of states, we shall introduce
operator form of classical mechanics. Our approach to this problem is very similar
to the one proposed by Sudarshan and coworkers (Gautam et al., 1979; Shery and
Sudarshan, 1978, 1979).

2. OPERATOR FORM OF CLASSICAL MECHANICS

The classical mechanics, in difference to quantum mechanics, is characterized
by the possibility of simultaneous measurement of both position and momentum
with vanishing deviations. Due to this, the algebra representing observables of
classical mechanics has to be the commutative one. In the direct product of two
rigged Hilbert spaces Hq ⊗ Hp one can define commutative algebra of classical
observables as the algebra (over R) of polynomials of the operators q̂cm = q̂ ⊗ Î

and p̂cm = Î ⊗ p̂. These operators represent coordinate and momentum of clas-
sical system. States can be defined, like in standard phase space formulation, as
functions of position and momentum, which are now operators. That is, pure states
are defined by:

δ(q̂ − q(t)) ⊗ δ(p̂ − p(t)) =
∫ ∫

δ(q − q(t))δ(p − p(t))|q〉〈q| ⊗ |p〉〈p| dq dp

= |q(t)〉〈q(t)| ⊗ |p(t)〉〈p(t)|, (1)

while (noncoherent) mixtures are ρ(q̂cm, p̂cm, t). These states are positive and
Hermitian operators normalized to δ2(0) if ρ(q, p, t) ∈ R, ρ(q, p, t) ≥ 0 and∫ ∫

ρ(q, p, t) dq dp = 1. If one calculates the mean values by the Ansatz:

〈f 〉 = Trf (q̂cm, p̂cm)ρ(q̂cm, p̂cm, t)

Trρ(q̂cm, p̂cm)
, (2)

then 〈f 〉 will be equal to standardly calculated:

f̄ =
∫ ∫

f (q, p)ρ(q, p, t)dqdp. (3)

The dynamical equation in operator formulation is defined as:

∂ρ(q̂cm, p̂cm, t)

∂t
= ∂H (q̂cm, p̂cm)

∂q̂cm

∂ρ(q̂cm, p̂cm, t)

∂p̂cm

− ∂ρ(q̂cm, p̂cm, t)

∂q̂cm

∂H (q̂cm, p̂cm)

∂p̂cm
. (4)
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It is obvious that this form is equivalent to the standard classical mechanics
since the latter appears through the kernels of the operator formulation (expressed
with respect to the basis |q〉 ⊗ |p〉). Let us further remark that this formulation
of classical mechanics employs formalism of standard quantum mechanics. More
precisely, the direct product of two rigged Hilbert spaces Hq ⊗ Hp used here is
“the carbon copy” of the one used in quantum mechanics when the coordinates of
system with two degrees of freedom are under consideration. The only difference
comes from the fact that we have neglected non-commuting operators here since
they have no physical meaning. All other aspects of the formalism are the same
or similar. Without going into details since it is beyond the scope of this article, it
should be stressed that this holds for all formal problems and respective solutions
as well.

3. HYBRID SYSTEMS

One can use operator form of classical mechanics in order to analyze the
interaction between classical and quantum systems. Mathematical framework is
based on direct product of the Hilbert space and two rigged Hilbert spaces (in case
when considered classical and quantum systems have only one degree of freedom).
The first Hilbert space Hqm is as in the standard quantum mechanics, while the
other two are rigged Hilbert spaces that were discussed in previous section. So,
for description of so called hybrid systems one uses Hqm ⊗ Hq

cm ⊗ Hp
cm.

The state of the composite system is the statistical operator ρ̂qm(t) ⊗ ρ̂cm(t),
where the first one acts in Hqm representing the state of quantum system and
second one acts in Hq

cm ⊗ Hp
cm representing the classical system. The properties

of these operators are as in standard quantum mechanics and as given in previous
section.

The evolution of hybrid systems state is governed by the Hamiltonian Ĥ =
V̂qm ⊗ V̂cm, where

V̂qm = Vqm(q̂qm, p̂qm) = Vqm(q̂ ⊗ Î ⊗ Î , p̂ ⊗ Î ⊗ Î ),

and

V̂cm = Vcm(q̂cm, p̂cm) = Vcm(Î ⊗ q̂ ⊗ Î , Î ⊗ Î ⊗ p̂).

Since it is Hermitian, operator V̂qm can be diagonalized in form:
∑

i

vi |ψi〉〈ψi | ⊗ Î ⊗ Î .

Obviously, the operator V̂cm is diagonal with respect to the basis |q〉 ⊗ |p〉.
The dynamical equation for hybrid systems is the generalization of

Schrödinger and Liouville equations or, more precisely, their combination given



818 Prvanović

by:

∂ρ̂qm(t) ⊗ ρ̂cm(t)

∂t
= 1

ih
[V̂qm, ρ̂qm(t)] ⊗ ρ̂cm(t)V̂cm

+ ρ̂qm(t)V̂qm + V̂qmρ̂qm(t)

2
⊗ {V̂cm, ρ̂cm(t)}, (5)

where operator form of the Poisson bracket {, } is defined by (4). Similar equation
appeared in (Aleksandrov, 1981, 1995; Boucher and Trashen, 1988; Prezhdo and
Kisil, 1997). There one can find detailed discussions regarding the properties of
there given dynamical equations of hybrid systems.

4. PROCESS OF MEASUREMENT

In literature, an ideal quantum measurement is considered as interaction
between the quantum system, described by the state |ψ(t)〉 in a Hilbert space Hqm,
and the measuring apparatus, classical system, initially in the state |φ(t0)〉. The
measurement process is such that (a) the quantum system, before the measurement
being in one of the eigenstates of the measured observable, say |ψi(t0)〉, does not
change the state during the measurement (repeated measurement has to give the
same results) and (b) the classical system undergoes transition from initial state
|φ(t0)〉 to |φi(t)〉. This transition enables one to find out what is the state of
measured quantum mechanical system.

The problem of the measurement is the following: if the initial state of the
quantum system was superposition of the eigenstates of measured observable, that
is if |ψ(t0)〉 = ∑

i ci |ψi(t0)〉, then, due to assumed linearity of the evolution, the
state of the composite system would be |ψ(t)〉 = ∑

i ci |ψi(t)〉 ⊗ |φi(t)〉, which
is in contradiction with the obvious fact that classical system cannot be in su-
perposed states. Many other processes can be related to this one in more or less
straightforward manner.

Within the operator formulation of the classical mechanics and hybrid sys-
tems, the process of measurement can be described as follows. The initial state:

ρ̂qm(t0) ⊗ ρ̂cm(t0) =
∑

i

∑
j

cic
∗
j |ψi(t0)〉〈ψj (t0)| ⊗ |q(t0)〉〈q(t0)| ⊗ |p(t0)〉〈p(t0)|,

(6)
evolves according to the dynamical equation (5) where V̂qm is the measured ob-
servable. The last term on the RHS of (5), due to which ρ̂cm(t) depends on ρ̂qm(t),
in this case becomes:

∑
i

∑
j

vi + vj

2
cic

∗
j |ψi(t)〉〈ψj (t)| ⊗ {V̂cm, ρ̂cm(t)}.
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This term suggests that correlated state can be assumed in the form of:∑
i

∑
j

cic
∗
j |ψi(t)〉〈ψj (t)| ⊗ |qij (t)〉〈qij (t)| ⊗ |pij (t)〉〈pij (t)|. (7)

But, such operator, despite of being the solution of (5), is not non-negative
one, i.e., some events would have negative probabilities if this operator is taken
as the state of composite system. The only meaningful solution of dynamical
equation is: ∑

i

|ci |2|ψi〉〈ψi | ⊗ |qi(t)〉〈qi(t)| ⊗ |pi(t)〉〈pi(t)|. (8)

This operator is Hermitian and positive one.

5. DISCUSSION

The initial state of hybrid systems (6) is idempotent (up to the norm), while
the evolved state in considered case (8) is not. Thus, in the absence of some
ad hoc introduced stochastic terms in the Hamiltonian and/or nonlinear terms in
the equation of motion, this equation produces noncausal evolution: the initial
noncorrelated pure state evolves in mixed correlated state.

From the evolved state it follows that to each state of the measured quantum
system |ψi〉 (which is the eigenstate of the measured observable), there corre-
sponds one state of the measuring apparatus (with sharp values of position and
momentum) |qi(t)〉 ⊗ |pi(t)〉 and each of these states happens with the probability
|ci(t0)|2. Consequently, solution (8) is in agreement with the projection postulate
of orthodox quantum mechanics.

The formal description of the collapse of quantum mechanical state could be
the following. Initial state of the hybrid system should be seen as∑

ij

cij (t)|ψi〉〈ψj | ⊗ |qi(t)〉〈qj (t)| ⊗ |pi(t)〉〈pj (t)|

for t = t0 since this correlated state is designed to be as pure, Hermitian and non-
negative for t ≥ t0 as is the initial one. The partial derivations within the Poisson
bracket on the right-hand-side of the dynamical equation, which is the generator of
time transformation, for t > t0 annihilate nondiagonal classical mechanical terms
of the state according to

∂

∂q̂
|qi(t)〉〈qj (t)| = ∂

∂q̂
δ(q̂ − qi(t))δi,j ,

∂

∂p̂
|pi(t)〉〈pj (t)| = ∂

∂p̂
δ(p̂ − pi(t))δi,j ,
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since the classical mechanical i �= j terms of designed state for t > t0 do not
commute with coordinate and momentum of the classical system, the meaning of
which is that they are not functions of the only available observables. For t = t0
these derivatives do not vanish since qi(t0) = q0 and pi(t0) = p0 for all i. This
means that dynamical equation instantaneously changes i �= j terms of classical
mechanical state at t0 and then forbids further time evolution of these terms, i.e.,
these terms become constant. Since there is no other possibility for the state of
hybrid system to be non-negative operator, i �= j terms of classical mechanical
state has to vanish in order to be time independent and, in this way, they annihilate
i �= j terms of quantum mechanical state. This is seen as the collapse of state of
quantum mechanical system.

Similar reasoning holds in some other cases of the interaction between clas-
sical and quantum systems. The pure initial states can evolve in noncoherent
mixtures, while noncoherent mixtures cannot evolve into coherent mixtures (pure
states), i.e. the process is irreversible. Therefore, the entropy increases or stays
constant as the consequence of the superposition of two linear dynamical equations
and the non-negativity of probability.
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